Lecture 28: DDH Assumption, Key Agreement, and ElGamal Encryption

Problem Statement

- The objective of this lecture is to build key agreement and public-key encryption protocols from the Decisional Diffie-Hellman (DDH) assumption
- Moreover, understand the relationship between the DDH assumption and other computational hardness assumptions like the discrete log assumption and Computational Diffie-Hellman (CDH) assumption

Decisional Diffie-Hellman Assumption

- Consider a group (G, \times) with generator g and order n; i.e., $g^n = e$, the identity and $\{g^1, g^2, \dots, g^n = e\} = G$
- ② The Decisional Diffie-Hellman (DDH) assumption states that it is computationally infeasible to have a non-trivial advantage in predicting whether the given sample $(\alpha, \beta, \gamma) \in G^3$ was sampled from the distribution (g^a, g^b, g^r) , where $a, b, r \in_R \{1, 2, \ldots, n\}$, or (g^a, g^b, g^{ab}) , where $a, b \in_R \{1, 2, \ldots, n\}$
- Intuitively, given (g^a, g^b) , the element g^{ab} is computationally indistinguishable from the random g^r

Diffie-Hellman Key Agreement

- **1** Alice samples $a \in_R \{1, 2, ..., n\}$ and sends $A := g^a$ to Bob
- ② Bob samples $b \in_R \{1, 2, ..., n\}$ and sends $B := g^b$ to Alice
- **3** Alice computes $k := B^a$ and Bob also computes $k := A^b$

- Given (g^a, g^b) , for an eavesdropper, the distribution of the key $k = g^{ab}$ seems indistinguishable from the random element g^r
- Alice and Bob can perform steps 1 and 2 simultaneously

ElGamal Encryption Scheme

- Any two-message key agreement protocol can be converted into a public-key encryption scheme
- **2** Gen(): Return a public key $pk = A := g^a$ and a secret key sk = a
- **3** Enc_{pk}(m): Compute $B := g^b$ and $c := m \cdot A^b$. The ciphertext is (B, c)
- **1** $\operatorname{Dec}_{\operatorname{sk}}(\widetilde{B},\widetilde{c})$: Compute $\widetilde{m}/\left(\widetilde{B}\right)^a$, where $\operatorname{sk}=a$.

Groups where DDH holds

- **1** The subgroup of k-th residues modulo a prime $p = k \cdot q + 1$, where q is also a prime. When k = 2, it is quadratic residues modulo a safe prime
- ② For a safe prime $p=2\cdot q+1$, the quotient group $\mathbb{Z}_p^*/\{\pm 1\}$
- A prime-order elliptic curve over a prime field (with some additional technical restrictions)
- A Jacobian of a hyper-elliptic curve over a prime field (with some additional technical restrictions)

DDH Assumption: Formal Definition

Security Game for DDH.

- ② If u=0, then it samples (α,β,γ) from the distribution (g^a,g^b,g^{ab}) , where $a,b\in_R\{1,2,\ldots,n\}$. If u=1, then it samples (α,β,γ) from the distribution (g^a,g^b,g^r) , where $a,b,r\in_R\{1,2,\ldots,n\}$
- **1** The honest challenge sends (α, β, γ) to the adversary
- **4** Adversary replies back with $\widetilde{u} \in \{0,1\}$ (its guess of the bit u)
- **5** The adversary wins the game if (and only if) $u = \tilde{u}$.
- ullet The DDH assumption states that any computationally efficient adversary only has a small (or, negligible) advantage in predicting the bit u

Relation with Other Assumptions: Discrete Log

- **1** Suppose (G, \times) be a group generated by g, and discrete log is easy to compute. That is, given $X := g^X$ as input, it is easy to compute $x \in \{1, 2, ..., |X|\}$ (say, using an algorithm A)
- ② Using such an algorithm, it is easy to construct a DDH adversary and break that assumption.
 - **1** Our adversary receives (α, β, γ) from the honest challenger
 - 2 Feeds α as input to the algorithm ${\cal A}$ and recovers ${\it a}$
 - **3** Compute $\delta := \beta^a$
 - 4 If $\gamma = \delta$, set $\widetilde{u} = 0$; otherwise, set $\widetilde{u} = 1$
- Sood for thought: Compute the advantage of our adversary
- The contrapositive of this statement is that if DDH is hard for a group, then DL is also hard for that group

Attack using Legendre Symbol

- **1** Suppose there is an algorithm that, given $X = g^x$ as input, can determine whether x is even or not
- 2 Note that when $\gamma = g^{ab}$, the exponent ab is even with probability 3/4
- **3** However, when $\gamma = g^r$, the exponent r is even with probability 1/2
- ullet So, using the algorithm mentioned above, we can construct an adversary who has a constant advantage in predicting u
- Food for thought: Construct this adversary and compute its distinguishing advantage

Relation with Other Assumptions: Computational Diffie-Hellman

- The computational Diffie-Hellman assumption (CDH) states that given (g^a, g^b) , where $a, b \in_R \{1, 2, ..., n\}$, it is computationally inefficient to compute g^{ab}
- ② Note that if CDH is easy in a group, there is an algorithm to compute g^{ab} from (g^a, g^b) . In this group, using this algorithm, an adversary can show that DDH is easy
- The contrapositive of this statement is that if DDH is hard for a group, then CDH is also hard for that group